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Using Random Forests to Multiply Impute Missing Data in an 

Online Patient-Centered Support Platform 

Abstract 
 

Background: Approximately 360 million people across the world are affected by mood 

disorders such as depression and bipolar affective disorder. There is a growing need for effective 

interventions in order to reduce this burden and help guide future research efforts. Online 

patient-centered studies offer a new and increasingly popular way of collecting these types of 

data, but psychiatric studies such as these often suffer from large amounts of missing data. 

Establishing a sound statistical framework to properly handle the missing data in these settings is 

important for achieving valid inference. Using multiple imputation in combination with random 

forests to impute these missing values offers a statistically sound and flexible solution to this 

problem.  

Methods: Multiple imputation by chained equations (MICE) [59] using random forests (RFs) [6] 

were used to multiply impute the missing values associated with the mixed-type (both qualitative 

and quantitative) data in an online patient-centered support platform called MoodNetwork (MN) 

[54]. Data was collected from 4,344 participants and consisted of both demographic information 

and scores on mood assessment instruments. The pre and post-imputation densities of the data 

were compared using kernel density plots. Additionally, a series of twelve univariate linear 
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regression models as well as a single, more complex multiple linear regression model were fit to 

both the raw data and each of the 𝑚 = 30 imputed data sets. Parameter estimates and their 

associated standard errors and p-values were pooled using Rubin’s rules [48], and were compared 

between the raw data results and the imputed data results. 

Results: The post-imputation densities of each imputed variable closely followed their pre-

imputation, raw data counterparts. The parameter estimates and p-values in each of the twelve 

univariate linear regression models resulting from the imputed data analysis yielded very similar 

results to their corresponding raw data estimates and p-values. Standard errors were consistently 

lower in the imputed data results than in the raw data results in all but two scenarios. This was 

largely due to the information gained from auxiliary variables and the substantial increase in 

sample size in the imputed data sets. These differences were even more pronounced in the 

multiple linear regression comparison, in which the raw data results could not be trusted, with a 

sample size of 𝑁 = 10 (due to very few participants not missing any data for each of the 

variables included in the regression model) as compared to the imputed data results (𝑁 = 4,344).  

Conclusions: In the case of complex, mixed-type psychiatric data sets with large amounts of 

missing data, using MICE with RF models to multiply impute the missing values results in 

unbiased parameter estimates that closely agree with the raw data results, while also effectively 

reducing the standard error of parameter estimates and greatly increasing the analyzable sample 

size. Creating multiple completed data sets for clinical researchers to use for future analyses 

paves the way for additional research and studies to be conducted, and can ultimately improve 

clinicians’ abilities to help those suffering from mood disorders. 
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1. Introduction and Background 

1.1 Clinical Relevance 
 

Mood disorders are one of the most complex issues that mental health professionals face 

today. Defined as a broad classification of all types of depression, mania, and bipolar disorders 

[26], mood disorders vary greatly from person-to-person in regard to both type and severity. 

Additionally, people of all ages, ethnicities, and genders can have mood disorders, which further 

complicates treatment and management options due the subjectivity of each individuals’ specific 

combination of attributes [36]. The World Health Organization (WHO) estimates that worldwide, 

approximately 300 million people are affected by depression, and that nearly 60 million people 

suffer from bipolar affective disorder [62]. In the United States (U.S.) alone, the average annual 

cost of major depressive disorder and bipolar disorder is $100 billion and $150 billion, 

respectively [54], when considering both direct (healthcare spending, medications, etc.) and 

indirect (reduced labor supply, incarceration, etc.) costs. In addition to the general cost-related 

burden, mood disorders also often increase individuals’ risk of developing comorbid conditions, 

such as heart disease, diabetes, and many other debilitating diseases. Thus, implementing a 

single, reliable treatment plan to each afflicted individual is both a complex and critically 

important task. 

1.2 MoodNetwork 
 

 The Dauten Family Center for Bipolar Treatment Innovation at Massachusetts General 

Hospital in Boston, Massachusetts has introduced a modern approach aimed at assisting people 

across the globe with mood disorders. MN, which is one of the first of its kind, is an online, 
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patient-centered research community for individuals with mood disorders, along with their circle 

of support (i.e. family, friends, partners) [54]. MN is a Patient-Powered Research Network 

(PPRN), which is funded through the Patient-Centered Outcomes Research Institute (PCORI). 

Each PPRN shares the same central goal of improving the capacity that the U.S. has to conduct 

comparative effectiveness research by attempting to incorporate not only medical professionals’ 

and stakeholders’ points of view on care, but also the perspectives of the patients themselves [54]. 

To date, MN has enrolled over 5,000 individuals of varying ages, genders, and socioeconomic 

backgrounds. Each enrolled individual in this large and diverse sample contributes demographic 

information and is also able to complete any number of assessments and surveys, which range 

from mood evaluations to research priority questionnaires that help guide future research efforts 

[54]. Participants can elect to complete these assessments any number of times, which allows them 

to track their scores over time and monitor their personal trends. 

Undeniably, there is a wealth of data present and there are likely key insights to be gained 

from these data, but there is one major limitation. Given the large number of participants 

enrolled in MN and given the fact that all surveys and assessments are voluntary, there is a 

substantial amount of missing data in the MN data set. Clinicians and statisticians alike are eager 

to investigate the data, but many statistical and data analysis techniques require complete data 

sets in order to achieve unbiased and accurate inferences. To further complicate things, some 

participants contribute multiple observations to MN – either by completing an assessment more 

than once, completing more than one assessment, or both. Additionally, there are both 

quantitative (assessment scores, age in years, etc.) and qualitative (sex, marital status, etc.) 

variables contributing to the missingness, and the large number of variables present results in a 

high-dimensional data structure. These data have yet to be analyzed in any capacity and with 
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online platform data rising in popularity in the clinical realm, developing a plan for handling this 

kind of data is of the utmost importance.  All of these factors lead to a unique and variable data 

set that, if analyzed properly, has the potential to yield groundbreaking results. 

1.3 Missing Data 
 

Missing data is one of the most common and most complex issues associated with data 

analysis. This is due largely to the fact that most analyses rely on a complete (zero missing 

values) data set in order to be run [34]. Missing data can arise for a multitude of reasons, such as 

incomplete data entry by a researcher, improper data conversion from one software to another, or 

participant unwillingness to answer a question in a survey-based setting. Thus, careful 

assumptions must be made on the pattern of missingness before the data can be analyzed. In 

1976, Donald Rubin proposed a system for classifying the different types of missing data [41]. 

The three types of missing data include missing completely at random (MCAR), missing 

at random (MAR), and missing not at random (MNAR) [41]. When data are MCAR, the 

probability of an observation (Xi) being missing does not depend on the value of Xi, and also 

does not depend on the value of any of the other observed variables in the data or unobserved 

variables not in the data. That is, for Xi: 

𝑃(𝑚𝑖𝑠𝑠𝑖𝑛𝑔|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑, 𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) = 𝑃(𝑚𝑖𝑠𝑠𝑖𝑛𝑔) 

  If the data are MCAR, simply dropping the missing observations is a valid method of 

adjustment for the missingness due to the nature of the missingness being truly random. As such, 

more formal adjustments or imputation methods are not needed for analyzing the data, given that 

a sufficient number of observations are left in the data set after dropping the missing 
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observations so as not to reduce efficiency of estimates. The estimates themselves, though, 

remain asymptotically unbiased [41].  

Oftentimes, data is instead classified as MAR rather than MCAR. If the data are MAR, 

the probability of an observation (Xi) being missing does not depend on the value of Xi or 

unobserved data, but does depend on the observed data. That is, the missingness of Xi can be 

explained after adjusting for one or more of the variables found in the data set. If the data are 

truly MAR (or MCAR), the missingness is considered ignorable and unbiased parameter 

estimates can still be produced without enacting a missing data model [13]. However, it is 

important to note that data can never be definitively be shown to be MAR, as values may be 

missing for unanticipated reasons. 

Thus, often the safest assumption for missing data is MNAR. When the data are MNAR, 

the probability of an observation (Xi) being missing does depend on the unobserved value of Xi. 

That is, the probability of the observation being missing is related to factors which are not 

measured or captured by the data that is available to the researcher, and the factors that are 

available in the data are unable to explain or predict the missingness present. This proves to be 

problematic, and in this case the missingness is considered non-ignorable [13]. When the data are 

MNAR, specifying an appropriate missing data model is necessary in order to attempt to obtain 

any unbiased estimates of the outcome of interest.   

1.4 Multiple Imputation 
 

One of the most popular and statistically efficient methods for dealing with missing data 

is the process of multiple imputation (MI). Many studies and research support the use of MI, and 

consider it to be one of the best methods for handling missing data (either MCAR or MAR, but 
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not necessarily MNAR), due to the general flexibility of the approach, its ease-of-use with 

virtually any kind of data, and the fact that the MI procedure takes into account the uncertainty 

associated with the missing values [1, 13, 20, 30, 34, 42]. Furthermore, the MI procedure appropriately 

includes the random error that results from the imputation process itself, which leads to 

approximately unbiased parameter estimates when analyzing the data [1, 20]. This is a key 

distinction and advantage over single imputation approaches, such as the common method of 

mean imputation, which fail to account for the error induced by imputation (without specialized 

software [1]), which leads to biased parameter estimates.  

The general idea behind MI is to first create several (𝑚) imputed data sets under a 

suitable model that successfully incorporates variation, as opposed to creating only one imputed 

data set. Then, the desired analysis can be performed on each of the 𝑚 data sets, and the 

parameter estimates from each of the 𝑚 analyses can simply be averaged together to form a 

single point estimate. The standard errors associated with this process can be calculated using a 

formula developed by Rubin that takes into account both within-imputation variance and the 

between-imputation variance [42]. This process, which has been appropriately named “Rubin’s 

rules”, will be described in further detail in subsection 2.3 (Statistical Analyses & Comparisons) 

of the Methods section of this paper. 

1.5 Random Forests 
 

Machine learning has become one of the most cutting-edge areas of research in the past 

decade. The general idea behind machine learning algorithms is to make some sort of decision or 

classification by detecting patterns in data and generalizing from these patterns to predict future 

outcomes [9, 14]. Random forests (RFs) are just one of many different machine learning methods. 
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RFs are meta-learners, since they are a collection of individual learners called decision trees 

(DTs). To form an RF of DTs, the DTs are grown through a multi-step process. In the first step, 

two data sets are created from the original data by splitting the original data into a training set 

and a test set. Next, the data that will be used to grow each tree is determined by taking a 

different bootstrap (a random sample with replacement) sample from the training set, with each 

sample containing the same number of observations as the training set – likely containing 

duplicate observations due to the nature of the bootstrap. Each bootstrap sample is referred to as 

the in-bag (IB) data, and the IB data usually contains approximately two-thirds of the training 

data. The remaining, left-over data that was not randomly sampled into the IB data is referred to 

as the out-of-bag (OOB) data, and comprises the remaining one-third of the training data [6, 25]. 

Once the IB and OOB data are established, the DTs themselves are created. The standard 

way each individual DT learner is grown is by taking a random number of variables (attributes) 

from the IB data and treating them as questions (root nodes) that will have a binary (“yes” or 

“no”) answer (leaf nodes) [28]. These binary splits are present for both qualitative and quantitative 

attributes, as the DT algorithm iteratively “looks for” the best split point using a method such as 

sum-of-squares regression or entropy for classification [6, 9]. Thus, a hierarchy of root nodes and 

leaf nodes develop, with a new root node stemming from the branch of each leaf node for each 

attribute that is assessed in the DT. The basic idea behind the RF procedure is to grow many, 

slightly different DTs, each of which make their own vote or prediction on what the outcome 

value ought to be. Each of the DTs are grown on a different bootstrap sample of the training data, 

thus the total number of trees will be equivalent to the total number of different IB data sets. 

Additionally, the DTs are grown without pre-setting the attributes to be used before growing the 

trees, signified by only considering a random set of attributes for each tree that is grown, which 
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appropriately accounts for any collinearity that may be present among the attributes [6, 25]. This 

conveniently results in each individual DT being is slightly different than the others amongst the 

total collection of all the DTs.  

Next, the collection of all the DTs grown and each of their respective decisions (which 

comprises the RF) are considered, and the forest makes a final classification or prediction based 

on which of the individual DT classifications or predictions received the most votes in the case 

of qualitative variables, or by calculating the mean across all DTs in the case of quantitative 

variables [6, 18, 25, 52]. The performance of the RF algorithm can be assessed via the OOB error, 

which is calculated by finding the average misclassification over the entire RF using all of the 

OOB data. This OOB error also acts as a built-in validation system of the algorithm, which is 

attractive from a statistical point of view since the performance of the method can be assessed 

simply from the piece of the training data that was not used (OOB data), rather than relying on a 

test set. This is especially useful if there is not a test set to check performance against, which is 

often the case when data are missing [18]. 

1.6 Approach and Goals 
 

There are numerous techniques that have been proposed to handle missing data using MI, 

including multiple imputation by chained equations (MICE), multiple imputation by 

classification and regression trees (CART), and Expectation-Maximization with Bootstrapping 

(EMB) [34]. Each method has its advantages and disadvantages, but a novel approach utilizing the 

machine learning technique of RFs in combination with MICE offers a surprisingly simple, non-

parametric way to handle the mixed data types present in the MN data set [56]. The goal of this 
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paper is to apply this flexible MI method to a large, mixed-type, partially-longitudinal data set 

that has yet to be analyzed in any major capacity.  

Once multiple completed data sets are generated using this MI method, a set of univariate 

linear regression models and a single, more complex multiple linear regression model will be fit 

to each individual imputed data set, as well as to the raw, unimputed data. Then, Rubin’s rules 

[43] will be used to pool the imputed results together over the repeated analyses. This will 

ultimately serve to determine if there are significantly different conclusions drawn between the 

imputed data results and the raw data results, and if the resulting variances and standard errors 

from the imputations are low/agree with the corresponding errors from the raw data. Lastly, a set 

of complete, multiply imputed data sets utilizing this application will be stored so that they can 

be used for any kind of future analyses, in order to allow medical professionals to investigate any 

future research question of interest arising from the MN data. 

2. Methods 

2.1 Data  
 

 Before the data could undergo cleaning or imputation, a critical step in the data 

preparation process was to determine how to best subset the data in a clinically relevant fashion. 

Following consultations with key MN investigators and personnel, it was determined that basing 

the pre-imputation data on only certain mood trackers/assessments was the most practical course 

of action. This is because some mood trackers/assessments are more validated than others in the 

current literature, and the researchers were only interested in this smaller subset of mood 

trackers/assessments and the degree to which their measurements do or do not coincide. 

Furthermore, although data is available on individuals from multiple countries, the pre-
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imputation data was pruned to include only participants from the U.S. This was done in order to 

properly impute values for the variable “region”, which was created based on the U.S. Census 

Bureau’s Census Divisions [57]. For the purposes of this paper, the analyses were restricted to 

U.S. participants only, but the imputation procedure could easily be extended to include 

international data in the future. However, this would likely be at the expense of losing 

information at the state level for U.S. participants, since the variable “state” would be undefined 

for international participants. It is also important to note that the two participants from Puerto 

Rico (PR) were excluded as a result of this decision, since PR does not fall under any of the 

Census Divisions as defined by the U.S. Census Bureau. 

As was previously stated, there are over 5,000 total participants who have consented and 

enrolled in MN (𝑁	 = 	5,211) as of July 2018. After accounting for these initial decisions 

regarding which subset of data were to be used prior to imputation, a final sample size of 𝑁	 =

	4,344 participants remained. This pre-imputation data set, which was based solely on 

demographic data, defined the base data set from which all subsequent assessment-included pre-

imputation data sets were derived from. Each of these participants contribute demographic 

information, such as age, sex, marital status, etc. Each participant is also eligible to complete any 

number of mood trackers/assessments as many times as they wish. These additional assessments, 

which will hereafter be referred to as “instruments”, attempt to measure and capture different 

aspects of mood state. Tables 1 and 2 below give a summary of the quantitative and qualitative 

variables, respectively. 

Table 1: Descriptive Statistics and Missingness – Quantitative Variables 

Variable Type Mean (SD) Min Max # Miss % Miss Description 

UID Demographic - - - 0 0.00% 
Unique identification 
number (UID) for each 
participant. 
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Age Demographic 43.21 (13.45) 18.00 92.00 1 0.02% Age in years. 

Number of people 
in household Demographic 2.74 (1.44) 1.00 15.00 151 3.48% 

Number of individuals 
currently living in 
participant’s household. 

ASRM Total 
Score Instrument 4.16 (4.13) 0.00 17.00 4065 93.58% 

Total score on the 
Altman Self-Rating 
Mania Scale (ASRM) [2], 
which measures mania. 

DBSA Total 
Score Instrument -1.10 (1.56) -4.00 4.00 3218 74.08% 

Total score on the 
Depression and Bipolar 
Support Alliance 
(DBSA) Wellness 
Tracker [12], which 
measures both 
depression and mania on 
a bipolar scale. 

QIDS-SR Total 
Score Instrument 15.58 (5.19) 1.00 26.00 3684 84.81% 

Total score on the Quick 
Inventory of Depressive 
Symptomatology Self-
Report (QIDS-SR) [44], 
which measures 
depression. 

SDS Total Score Instrument 20.87 (7.17) 0.00 30.00 4245 97.72% 

Total score on the 
Sheehan Disability Scale 
(SDS) [51], which 
measures 
disability/functional 
impairment. 

BART Total 
Score Instrument 23.52 (24.84) 0.00 75.00 3657 84.19% 

Total score on the 
Balloon Analog Risk 
Task (BART) [31], which 
measures riskiness/risk-
taking behavior 
tendency. 

WHO-5 Total 
Score Instrument 7.38 (5.12) 0.00 25.00 4229 97.35% 

Total score on the World 
Health Organization 
Well-Being Index 
(WHO-5) [5], which 
measures quality of 
life/well-being. 

 

Table 2: Descriptive Statistics and Missingness – Qualitative Variables 

Variable Type Levels N % # Miss % Miss Description 

Depression Demographic 
No 124 2.90% 

0 0.00% Indicator of if participant has ever 
experienced depression. 

Yes 4220 97.10% 

Hypomania/Mania Demographic No 1071 24.70% 0 0.00% Indicator of if participant has ever 
experienced hypomania or mania. 
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Yes 3273 75.30% 

Friend/Family 
Member Demographic 

No 124 2.90% 
535 12.32% 

Indicator of if participant has a 
friend or family member who has 
experienced depression or bipolar 
disorder. Yes 4220 97.10% 

Sex Demographic 

Male 829 19.40% 

65 1.50% Sex of participant. 
Female 3394 79.30% 

Ambiguous 20 0.50% 

Other 36 0.80% 

Region* Demographic 

East North Central 553 13.20% 

163 3.75% 
U.S. Census Division region in 
which participant receives medical 
care. 

East South Central 159 3.80% 

Mid-Atlantic 464 11.10% 

Mountain 312 7.50% 

Northeast 825 19.70% 

Pacific 586 14.00% 

South Atlantic 685 16.40% 

West North Central 243 5.80% 

West South Central 354 8.50% 

Hispanic Demographic 
No 3769 91.50% 

225 5.18% Indicator of if participant is 
Hispanic. 

Yes 350 8.50% 

Race Demographic 

Native American, 
American Indian, 
or Alaskan Native 

45 1.10% 

113 2.60% Race of participant. 

Asian 112 2.60% 

Black 150 3.50% 

Native Hawaiian or 
Pacific Islander 9 0.20% 

White 3639 86.00% 

Other 276 6.50% 



12 
 

Education Demographic 

8th grade or less 20 0.50% 

106 2.44% Highest level of education 
completed by participant. 

Some high school 114 2.70% 

High school 
graduate or GED 491 11.60% 

Some college or 
two-year degree 1554 36.70% 

Four-year college 
graduate 970 22.90% 

More than four-
year college degree 1089 25.70% 

Marital Status Demographic 

Now married 1613 38.00% 

96 2.21% Marital status of participant. 

Living with partner 
or significant other 468 11.00% 

Widowed 81 1.90% 

Divorced 671 15.80% 

Separated 172 4.00% 

Never married 1243 29.30% 

Employment Status* Demographic 

Employed 2227 51.30% 

0 0.00% 

Indicator of if participant is 
employed, unemployed, or if they 
indicated another option (disabled, 
volunteer, etc.) without also 
indicating employed or 
unemployed. 

Unemployed 871 20.10% 

Other/Unknown 1246 28.70% 

Currently Receiving 
Medical Care* Demographic 

No 3472 89.60% 
467 10.75% 

Indicator of if participant currently 
receives medical treatment at a 
hospital or medical facility. Yes 405 10.40% 

Table 2: Variables marked with an asterisk (*) represent variables that were created/modified based off of original, raw MN data. 

 An important observation to be made from these tables is that the percent missingness 

(given by the % Miss column) varies greatly from variable to variable and is extremely high 

(more than 90% missing) in some cases for instrument variables. Due to the nature of MN, in 

that some demographic questions and all instrument completions are optional, a “complete case” 

in these data would be considered relatively rare. For the purposes of the analyses in this paper, a 

participant’s value for any given variable is considered missing if it is not reported, even for the 
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optional demographic questions and instruments. While this may seem concerning from a 

statistical standpoint, it is widely agreed upon in the literature that there is no absolute maximum 

percent missing data that would justify discarding variable(s), and the MICE method is able to 

account for large amounts of missing data by design [4, 15, 46, 47, 55, 59]. For example, even if a 

variable has > 90% missing values, if the overall sample size is sufficiently large, the number of 

observations without missing values may very well provide enough information about the highly 

missing variable. Assuming computations are not too intensive/time-consuming, van Buuren and 

Groothuis-Oudshoorn (2011) suggest setting the number of imputations (𝑚) equal to the average 

percent of missing data across all variables in the data set [59]. In this paper, this is the approach 

taken, where the average percent missingness across all variables (excluding UID) is 30.3%, so 

𝑚 = 30 imputations are used. 

Additionally, given that all instrument completions are optional for each participant, the 

number of unique, first completions (one completion per participant) of each instrument varies 

greatly. As a result, there is a wide range of possible completion patterns among all participants, 

with some participants contributing more information than others to the instrument variables in 

the full, wide data set. To give a general idea of the completion patterns present in the data, 

Table 3 below gives a summary of the number of first completions for each instrument in the 

data set, as well as the pairwise completions for each instrument (i.e., the number of participants 

who completed two instruments, for all possible combinations of two instruments). Also, to give 

a general idea of the amount of people who completed one instrument, two instruments, etc., 

Table 4 depicts the raw number and percentage for each possible number of instruments, with a 

minimum of zero and a maximum of six instruments completed. 
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Table 3: Unique First Completions and Pairwise Completions for Instruments 

Instrument ASRM DBSA QIDS-SR SDS WHO-5 BART 

ASRM 279 242 234 37 233 20 

DBSA 242 1126 519 90 620 75 

QIDS-SR 234 519 660 75 483 49 

SDS 37 90 75 99 82 23 

WHO-5 233 620 483 82 687 52 

BART 20 75 49 23 52 115 

Table 3: Bolded cells indicate the sample size for the total unique, first completions for each instrument. 

Table 4: Total Instrument Completeness 

# Instruments 
Completed # Participants % Participants 

0 2999 69.03% 

1 552 12.71% 

2 278 6.40% 

3 264 6.08% 

4 199 4.58% 

5 42 0.97% 

6 10 0.23% 

 

2.2 The mice Package 
 

2.2.1 Background and Justification of Use 
 

 The R package titled “mice” was first introduced by van Buuren and Groothuis-

Oudshoorn in 2011 when they published their paper titled “mice: Multivariate Imputation by 
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Chained Equations in R” [59]. The package was aimed at providing a relatively simple, easy-to-

use method for imputing mixed-type data, which is data that includes both qualitative and 

quantitative variables in its structure. The mice package, appropriately named after the MICE MI 

method, is sometimes alternatively referred to as the fully-conditional specification (FCS) 

method. There are two primary imputation methods that currently exist in the literature: FCS and 

joint modelling (JM). The main difference between the FCS and JM approaches is that JM 

requires the specification of a multivariate normal distribution for the missing data, as well as 

imputing from the missing datum’s conditional distributions via Markov chain Monte Carlo 

(MCMC) techniques [8, 45], while FCS does not have these requirements. Instead, FCS specifies 

the multivariate imputation model variable-wise by defining a conditional density for each 

variable that has missing values [4, 59]. In other words, the FCS approach simply models the 

missing data conditional upon the other variables that are available in the data set.  

Furthermore, due to the nature of the chained equations in the MICE procedure, each 

variable in the data set can be modeled based on its own unique distribution, which allows for 

much more pliable imputation model choices than JM would. The sole assumption of using 

MICE under most applications for imputation is for the data to be MAR. MICE can also be used 

under MNAR conditions [59], but proper modeling of the missing data is necessary, and Little 

warns that MNAR models are subject to a deficiency in identification in all cases [33]. It is also 

important to note that the exact regression methods used in the MICE procedure still operate 

under the same assumptions that would be made if a traditional regression were run without 

imputation. If the data truly are MNAR, any imputation method is likely to perform poorly since 

the pattern of missingness, by definition, cannot be explained by the variables that are present. 

For the purposes of this thesis, the missing data will be presumed to be MAR. This seems 
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plausible, since the missingness of instrument completions can likely be explained by 

demographic variables (which generally have very little missing data), and/or by the other 

instrument measures that are present in the data. 

The authors present the MICE method as a superior alternative to JM MI methods, due to 

the aforementioned reduction in assumptions compared to JM, the fact that it is possible to 

specify models for which there is no known joint distribution, and the ease of implementation via 

statistical programming software using MICE [4, 59]. Results from multiple different studies and 

simulations suggest that MICE works quite well across different situations, including 

epidemiological data settings [35], data sets with different classes of MAR data (more missingness 

for larger values, more missingness for the center of a distribution, etc.) [58], and even in large 

survey-type data settings with large amounts of missing data [48]; an extremely similar situation 

to MN. 

While it seems clear that MICE is a widely used and appropriate method for MI, there are 

a multitude of different ways the mice package can be implemented. Due to the flexibility of the 

MICE framework, in that the algorithm is a concatenation of several univariate models for the 

missing data, it is possible to specify a different model for each variable according to its own 

unique distribution. This is where the different applications of mice come into play, as the entire 

procedure is dependent on the overall pattern of model specifications for each variable in the 

data set. The model of choice for this paper was unanimous across all variables: using the 

method of RF to impute the missing values.  

The justification for using the RF method for the imputation of all variables in the MN 

data set is simple: other FCS methods for imputation, such as linear regression for continuous 

variable modeling or logistic regression for binary variable modeling require that these models 
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are specified correctly, including interactions and non-linearities [49]. However, neglecting 

interactions or non-linear terms can lead to biased results. Moreover, using parametric regression 

models in the MICE procedure cannot be done in cases where there are more predictor variables 

than the number of observations without sufficient prior information [23], or when collinearity is 

present between variables. Using RFs to impute all of the missing data overcomes these 

challenges, since this method is non-parametric, can handle both qualitative and quantitative 

variable types, and accommodates non-linearities and interactions in the data, if any are present 

[49]. Burgette and Reiter corroborate these advantages following a simulation study comparing 

MICE using linear regression vs. MICE using DTs, hinting at the potential advantage of 

extending their ideas of MICE using DT’s to MICE using RFs [7]. Thus, the MN data set, which 

can be described as a mixed-type data set arising from an observational study, proves to be 

particularly well suited for the use of RFs in the MICE procedure of the imputation process. 

2.2.2 Data Setup & Algorithm 
 

 The general approach that van Buuren and Groothuis-Oudshoorn implement in the mice 

package involves a multi-step process. First, we define the following notation from van Buuren 

& Groothuis-Oudshoorn. Let 𝑌< with (𝑗 = 1, … , 𝑝) be one of 𝑝 incomplete variables, where 𝑌 =

	(𝑌@, … , 𝑌A). The observed and missing parts of 𝑌<  are denoted by 𝑌<BCD and 𝑌<EFD  , respectively, 

so 𝑌BCD = 	 (𝑌@BCD, … , 𝑌ABCD) and 𝑌EFD = 	 (𝑌@EFD,… , 𝑌AEFD) stand for the observed and missing data 

in 𝑌. The number of imputations is equal to 𝑚	 ≥ 	1. The ℎIJ imputed data sets are denoted as 

𝑌(J) where ℎ = 1, … ,𝑚. Let 𝑌K< = (𝑌@, … , 𝑌<K@, 𝑌<L@, … , 𝑌A) denote the collection of the 𝑝 −

1	variables in 𝑌 except 𝑌<. Let 𝑄 denote the quantity of scientific interest (e.g., a regression 
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coefficient). In practice, Q is often a multivariate vector. More generally, Q encompasses any 

model of scientific interest. 

 As an extension to the mice package in R, in 2014 Shah et al. [49] proposed a unique 

framework that would allow for RF models to be used as the imputation model of choice within 

the MICE procedure. Many of the most commonly used methods for imputation models in mice 

are not able to account for interactions or non-linearities in the data, but the introduction of this 

particular method provided a way to accomplish this. Furthermore, Shah et al. implemented this 

technique in two slightly different ways: one for quantitative variables and one for qualitative 

variables – which offers the advantage of flexibility for mixed-type data sets, while still 

preserving the same general methodology of an RF across both variable types. The authors 

compared their method, which can be used in either their own package (CALIBERrfimpute) or as 

a method within the base mice package, to the standard parametric mice package. Their results 

showed that using RFs within MICE using their technique provided narrower confidence 

intervals, less-biased parameter estimates, and was more efficient than standard parametric 

MICE methods [49]. 

 Putting all of these components together results in the final, formal mice algorithm (using 

Shah et al.’s RFs method as the method of imputation), as outlined below in Table 5: 

Table 5: The mice Algorithm Using the RF Method 

Step 1. Begin by using a simple imputation approach, such as mean imputation, for all missing values in 

the data set. These initial imputations will act as “placeholders” for the soon-to-be MICE-imputed values. 

Step 2. Once the order in which variables will be imputed is established, the placeholder imputed values 

for the first variable to be imputed, given by 𝑌@, are set back to missing. 

Step 3. The non-missing values of 𝑌@, given by 𝑌@BCD, are regressed on all of the other variables from the 

data set that will be included in the appropriate imputation model (in this case, an RF model is used). 
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Step 4.  

4a) Quantitative Variables: After the imputation model is fit, the missing values of 𝑌@, given by 

𝑌@EFD , are imputed by random draws from the independent normal distributions centered on the 

conditional means predicted by the RF imputation model from Step 3, with variance equal to the 

OOB error estimate.  

4b) Qualitative Variables: After the imputation model is fit, the missing values of 𝑌@, given by 

𝑌@EFD , are imputed by taking the prediction from the terminal node of a randomly chosen DT from 

the RF imputation model from Step 3. 

Step 5. Steps 2 – 4 are repeated for each variable that has missing data. Once a variable, 𝑌<, has undergone 

these steps, both 𝑌<BCD and the newly imputed values of 𝑌<, call them 𝑌<
FEA , are used in the imputation 

model for all other variables (𝑌<L@,… , 𝑌A).	 

Step 6. Steps 2 – 5 are repeated for a pre-defined number of iterations, as a means of assuring the 

convergence of the imputed values – regardless of the order in which (𝑌<,… , 𝑌A) are imputed. The default 

number of iterations is ten. 

Step 7. Steps 2 – 6 are repeated 𝑚 times, where 𝑚 is the desired number of fully-imputed data sets. 

 

  All of the variables present in the MN data were used in the imputation procedure except 

for UID (19 total variables), since it simply serves as an identification variable for each 

participant. Because an RF application of mice is used, it is not necessary to include all possible 

interactions of interest before undergoing imputation. Including all of the possible variables 

except for UID allows for the imputation model to be more general than any of the analysis 

models that could be fit as a result of the imputation, which is a key consideration when setting 

up a MICE procedure that also serves to reduce bias [4, 13, 21, 47]. Only the total scores for each of 

the six instruments, as opposed to all of the individual items of each instrument, were used in the 

imputation procedure. This choice was made partly due to the MN clinicians’ preferences, and 

also because in the raw MN data, there was hardly any missing data at the individual item level 
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within each instrument [21]. It is also important to note that many of the imputed values for the 

quantitative variables were not whole numbers. Given that all of the quantitative variables in 

these data are only defined for integer values, these imputed non-integer values are certainly 

impossible to obtain in a real-world setting. Rounding the imputed values was considered, but it 

has been found that leaving imputed values as non-integer values reduces bias in parameter 

estimates, and generally leads to improved MI results [34, 59, 60]. Therefore, the imputed values 

were left as-is and were not rounded up or down to whole numbers. 

There are several parameters used in the mice [59] algorithm that required specification 

before the procedure itself could be run. First, 𝑚 = 30 imputed data sets were specified to be 

generated. Second, the method used for all qualitative variables was specified as rfcat [50] and the 

method used for all quantitative variables was specified as rfcont [50]. Third, the number of 

variables considered at each split (mtry) was left as the default, which is equal to one third of the 

number of predictors for qualitative variables, and is equal to the square root of the number of 

predictors for quantitative variables. Fourth, the UID variable was removed from predictions by 

using a custom predictorMatrix specification. Fifth, the order in which variables were imputed 

was not specified, so the variables were imputed in the same order as they appear in the data set. 

Sixth, specific restrictions on the minimum and maximum value of imputed values were 

specified for some quantitative variables using the post and squeeze functions in mice, due to the 

fact that there are only specific possible score ranges for the instrument variables, and other 

quantitative variables such as Age and Number in Household are only defined for positive 

values. Seventh, a random seed was set for reproducibility purposes. Lastly, 𝑛 = 20 trees were 

specified to be grown in each RF to minimize bias in the estimates following MI, rather than the 

mice package’s default of 𝑛 = 10 , per the recommendations of Shah et al [49]. 
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2.3 Statistical Analyses & Comparisons 
 

 From a clinical perspective, it was determined that conducting a series of univariate linear 

regressions would be a relevant, informative way of both assessing the performance of the MI 

and of demonstrating a practical application using the multiply imputed data. This embodies the 

central purpose of using the RF method within the MICE procedure, in that the goal was to 

explore and compare the final point estimates and their associated errors after conducting the 

series of univariate linear regressions on the raw data results. More specifically, to cover the 

range of variable types (qualitative vs. quantitative), data types (demographic vs. instrumental), 

and variability in the completeness across different instruments (relative to other variables/data 

of the same type), twelve simple linear regression models were fit on each of the thirty data sets 

resulting from the implementation of the mice algorithm. Below, Table 6 summarizes the twelve 

regression models and the statistical rationale for choosing each combination of variable types, 

data types, and variable completeness. 

Table 6: Univariate Linear Regression Models 

Regression Model Rationale 

1. 𝐸[𝑄𝐼𝐷𝑆	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒] = 𝛽\ + 𝛽@ ∗ 𝐴𝑔𝑒 

Outcome:  
• Quantitative 
• High # of completions (N = 660) 

Predictor:  
• Demographic variable 
• Quantitative 
• Low # of imputed values (N = 1)  

2. 𝐸[𝑄𝐼𝐷𝑆	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒] = 𝛽\ + 𝛽@ ∗ 𝑁𝑢𝑚𝑏𝑒𝑟	𝑖𝑛	𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 

Outcome:  
• Quantitative 
• High # of completions (N = 660) 

Predictor:  
• Demographic variable 
• Quantitative 
• High # of imputed values (N = 151) 

3. 𝐸[𝑄𝐼𝐷𝑆	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒] = 𝛽\ + 𝛽@ ∗ 𝐼(𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔	𝐶𝑎𝑟𝑒) 
Outcome:  

• Quantitative 
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• High # of completions (N = 660) 
Predictor:  

• Demographic variable 
• Qualitative 
• High # of imputed values (N = 467) 

4. 𝐸[𝑄𝐼𝐷𝑆	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒] = 𝛽\ + 𝛽@ ∗ 𝐼(𝑆𝑐ℎ𝑜𝑜𝑙 = 2) + 𝛽c ∗

𝐼(𝑆𝑐ℎ𝑜𝑜𝑙 = 3) + 𝛽d ∗ 𝐼(𝑆𝑐ℎ𝑜𝑜𝑙 = 4) + 𝛽e ∗ 𝐼(𝑆𝑐ℎ𝑜𝑜𝑙 = 5) + 𝛽f ∗

𝐼(𝑆𝑐ℎ𝑜𝑜𝑙 = 6) 

Outcome:  
• Quantitative 
• High # of completions (N = 660) 

Predictor:  
• Demographic variable 
• Qualitative 
• Low # of imputed values (N = 106) 

5. 𝐸[𝑄𝐼𝐷𝑆	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒] = 𝛽\ + 𝛽@ ∗ 𝐷𝐵𝑆𝐴	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒 

Outcome:  
• Quantitative 
• High # of completions (N = 660) 

Predictor:  
• Instrument (total score) variable 
• Quantitative 
• High # of completions (N = 1126) 

6. 𝐸[𝑄𝐼𝐷𝑆	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒] = 𝛽\ + 𝛽@ ∗ 𝑆ℎ𝑒𝑒ℎ𝑎𝑛	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒 

Outcome:  
• Quantitative 
• High # of completions (N = 660) 

Predictor:  
• Instrument (total score) variable 
• Quantitative 
• Low # of completions (N = 99) 

7. 𝐸[𝐴𝑆𝑅𝑀	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒] = 𝛽\ + 𝛽@ ∗ 𝐴𝑔𝑒 

Outcome:  
• Quantitative 
• Low # of completions (N = 279) 

Predictor:  
• Demographic variable 
• Quantitative 
• Low # of imputed values (N = 1) 

8. 𝐸[𝐴𝑆𝑅𝑀	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒] = 𝛽\ + 𝛽@ ∗ 𝑁𝑢𝑚𝑏𝑒𝑟	𝑖𝑛	𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 

Outcome:  
• Quantitative 
• Low # of completions (N = 279) 

Predictor:  
• Demographic variable 
• Quantitative 
• High # of imputed values (N = 151) 

9. 𝐸[𝐴𝑆𝑅𝑀	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒] = 𝛽\ + 𝛽@ ∗ 𝐼(𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔	𝐶𝑎𝑟𝑒) 

Outcome:  
• Quantitative 
• Low # of completions (N = 279) 

Predictor:  
• Demographic variable 
• Qualitative 
• High # of imputed values (N = 467)  
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10. 𝐸[𝐴𝑆𝑅𝑀	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒] = 𝛽\ + 𝛽@ ∗ 𝐼(𝑆𝑐ℎ𝑜𝑜𝑙 = 2) + 𝛽c ∗

𝐼(𝑆𝑐ℎ𝑜𝑜𝑙 = 3) + 𝛽d ∗ 𝐼(𝑆𝑐ℎ𝑜𝑜𝑙 = 4) + 𝛽e ∗ 𝐼(𝑆𝑐ℎ𝑜𝑜𝑙 = 5) + 𝛽f ∗

𝐼(𝑆𝑐ℎ𝑜𝑜𝑙 = 6) 

Outcome:  
• Quantitative 
• Low # of completions (N = 279) 

Predictor:  
• Demographic variable 
• Qualitative 
• Low # of imputed values (N = 106) 

11. 𝐸[𝐴𝑆𝑅𝑀	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒] = 𝛽\ + 𝛽@ ∗ 𝐷𝐵𝑆𝐴	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒 

Outcome:  
• Quantitative 
• Low # of completions (N = 279) 

Predictor:  
• Instrument (total score) variable 
• Quantitative 
• High # of completions (N = 1126) 

12. 𝐸[𝐴𝑆𝑅𝑀	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒] = 𝛽\ + 𝛽@ ∗ 𝑆ℎ𝑒𝑒ℎ𝑎𝑛	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒 

Outcome:  
• Quantitative 
• Low # of completions (N = 279) 

Predictor:  
• Instrument (total score) variable 
• Quantitative 
• Low # of completions (N = 99) 

 

 While simple univariate linear regressions are appropriate to explore and compare the 

imputed vs. raw data results, to get a sense of the full potential that this MI would have in the 

context of MN, a multiple linear regression was also fit on the imputed data. In many cases, 

multiple linear regression models cannot be fit on the raw MN data, due to the high percentage of 

missingness present in most covariate patterns [34]. Furthermore, even when a multiple linear 

regression can be run on the raw data, the sample size available for the regression will be 

extremely small, thus severely limiting the power and generalizability of the analysis, as well as 

likely overfitting the model itself [10]. For example, consider a multiple linear regression with 

DBSA total score as the outcome, where the DBSA instrument assesses both depression and 

mania on a bipolar scale.  Although there are 1,126 unique first completions of the DBSA 

instrument, the sample size available for analysis drastically decreases by nearly 50% once the 

WHO-5 total score is also included as a predictor (𝑁jklmLnop = 620). The analyzable sample 

size shrinks even further to less than twenty observations when other relevant predictors, such as 
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the BART and ASRM total scores, Education, and Number in Household 

(𝑁jklmLnopLkmqrLmlqsLtuvLwvEoBvDx = 17), are included. Moreover, the multiple linear 

regression completely fails/cannot be run if, for example, the Friend or Family (FoF) indicator 

variable is added to the regression formula. This is because each participant who is not missing 

data for the FoF variable has 𝐹𝑜𝐹 = 1, and therefore the linear model cannot be fit if there is no 

variability in one of the predictor variables. 

Given that MN researchers and/or other clinicians in the future may want to explore any 

number of different multiple linear regression options (or even logistic or ordinal regression), MI 

presents a perfect opportunity to make this possible by creating multiple complete data sets. To 

illustrate the advantages of analyzing the MI data over the raw MN data in the case of multiple 

linear regression, a plausible model was fit to both the imputed data and the raw data, as outlined 

by Equation 1 below. 

Equation 1: Multiple Linear Regression Model 

𝐸[𝑊𝐻𝑂	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒] = 𝛽\ + 𝛽@ ∗ 𝑆ℎ𝑒𝑒ℎ𝑎𝑛	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒 + 𝛽c ∗ 𝑄𝐼𝐷𝑆	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒 +

𝛽d ∗ 𝐴𝑆𝑅𝑀	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒 + 𝛽e ∗ 𝐵𝐴𝑅𝑇	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒 + 𝛽} ∗ 𝐷𝐵𝑆𝐴	𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒 + 𝛽f ∗ 𝐴𝑔𝑒 +

𝛽~ ∗ 𝐼(𝑆𝑒𝑥 = 𝐹𝑒𝑚𝑎𝑙𝑒) + 𝛽� ∗ 𝐼(𝑆𝑒𝑥 = 𝐴𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠) + 𝛽� ∗ 𝐼(𝑆𝑒𝑥 = 𝑂𝑡ℎ𝑒𝑟)         

In order to appropriately conduct the MI procedure, the 𝑚 = 30 imputed data sets 

resulting from the mice algorithm were analyzed according to Rubin’s original MI framework [41, 

42, 43]. This standard MI framework requires, by definition, the generation of multiple imputed 

data sets so that the uncertainty associated with each individual imputation can properly be 

accounted for. The random draws from Step 4 in Table 5 are the key components of this aspect 

of the MI procedure, and in combination with the bootstrap sampling associated with RFs, these 

random draws help to ensure that the imputations are “proper” [32, 49]. Thus, each of the above 
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univariate linear regression models, as well as the multiple linear regression model, were 

conducted on each of the 𝑚 = 30  imputed data sets resulting from the mice run. Subsequently, 

each of the thirty parameter estimates were calculated using standard linear regression utilizing 

the ordinary least-squares method [27]. These parameter estimates and their associated standard 

errors were then pooled and calculated using Rubin’s rules. Rubin’s rules, as previously 

mentioned, are a series of equations that are used to appropriately pool the estimates resulting 

from the models fit on each of the imputed data sets generated in an MI procedure [43]. The first 

equation, which yields the overall pooled parameter estimate, is given by Equation 2 below. 

Equation 2: The Pooled Parameter Estimate 

𝑄� = 	
1
𝑚�𝑄F

E

F�@

 

Where 𝑄�F(𝑖 = 1…𝑚) is each of the 𝑚 = 30 parameter estimates, and 𝑄� is the pooled 

parameter estimate. The pooled parameter estimate is simply the mean of each of the parameter 

estimates. 

In order to calculate the combined variance, and therefore the combined standard error, 

both the within-imputation variance and the between-imputation variance need to be properly 

accounted for. First, the within-imputation variance is given by Equation 3 below. 

Equation 3: Within-Imputation Variance 

𝑈� =	
1
𝑚�𝑈F

E

F�@

 

Where 𝑈F(𝑖 = 1…𝑚) is each of the 𝑚 = 30 variances associated with each of the 𝑚 =

30 parameter estimates, 𝑄�F(𝑖 = 1…𝑚), and 𝑈� is the average within-imputation variance. The 
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average within-imputation variance is simply the mean of each of the	𝑚 = 30 variances. Next, 

the between-imputation variance is given by Equation 4 below. 

Equation 4: Between-Imputation Variance 

𝐵 =	
1

𝑚 − 1�(𝑄�F − 𝑄�)c
E

F�@

 

Where 𝐵 is the between-imputation variance. Putting both Equations 3 and 4 together, the 

total variance of 𝑄� is given by Equation 5 below. 

Equation 5: Total Variance of the Pooled Parameter Estimate 

𝑇 = 𝑈� + (1 +
1
𝑚)𝐵 

Where T is the total variance. The total variance of the pooled parameter estimate is 

equivalent to the weighted sum of the within-imputation and between-imputation variances, and 

the total standard error can be calculated by simply taking the square root of this value. 

Standard Wald-type confidence intervals and statistical tests for 𝑄� can be calculated 

using a Student’s 𝑡 approximation, given by Equation 6 below. 

Equation 6: Reference Distribution for Statistical Tests 

(𝑄 − 𝑄�)
√𝑇

	~	𝑡� 

Where the degrees of freedom (df), 𝑣, are given by Equation 7 below. 

Equation 7: Degrees of Freedom for the Reference Distribution 

𝑣 = (𝑚 − 1)(1 +
𝑈�

�1 + 1
𝑚�𝐵

)c 
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And lastly, the estimate of information lost due to missingness for each estimated 

parameter is given by Equation 8 below. 

Equation 8: Information Lost Due to Missingness 

𝜆 = 	
𝐵 +	 𝐵𝑚
𝑇  

Analyses were performed in R 3.4.1 [37], using the tidyverse [61] package for data 

cleaning/preparation and diagnostic plots, the broom [39] package for the extraction of omnibus p-

values from qualitative predictor models with more than one category, the xlsx [17] package for 

importing the raw data files, the lubridate [22] package for the handling of dates/times, the 

data.table [16] package for the merging of data frames, the psych [38] package for generating 

descriptive statistics for quantitative variables, the Hmisc [24] package for generating descriptive 

statistics for qualitative variables, the VIM [27] package for generating missing value 

visualizations, the gridExtra [3] package for the creation of gridded graphics, the 

CALIBERrfimpute [50] package for setting the number of trees to be grown in each RF and for 

imputation, and the mice [59] package for imputation via MICE methodology, conduction of 

analyses, and for the pooling of results according to Rubin’s rules. 

3. Results 
 

3.1 Missingness Pattern and Pre vs. Post-Imputation Distributions 
 

Tables 1 & 2 from section 2.1 gave a summary of the raw number of missing values and 

the percent missingness for each variable. To give a visual representation of the pre-imputation 

data, Figure 1 below shows both the pattern of missing data over the entire data set and the 

proportion of missing values for each variable, sorted in order of descending missingness. In the 
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pattern plot, red boxes indicate missing data points while blue boxes indicate non-missing data 

points.  

Figure 1: In both plots, red color indicates missing data. In the left plot, the proportion of missing values for each variable is plotted in order of 
descending missingness. In the right plot, different patterns of missingness are displayed with non-missing data points represented by blue boxes. 

 

There is a steep drop off in percent missingness after the instrument variables. The DBSA 

total score is the least-missing instrument variable, with 74.08% missing data, and the next most-

missing variable in the data set is the friend or family member indicator variable (FoF) at 12.32% 

missing. This signifies that overall, most of the missingness present in the MN data comes from 

the instrument variables and not the demographic variables, which is to be expected. SDS total 

score is the most-missing variable in the data set with 97.72% missing data, which gives a sense 

of the extreme missingness present for some of the instrument variables. From the missingness 

pattern plot, we are able to get a sense of the different combinations of missing variables across 

Figure 1: Missingness Pattern and Proportions 

 

Figure 2: Missingness Pattern and Proportions 

 

Figure 3: Quantitative Variable Distributions – Pre vs. Post-ImputationFigure 4: 
Missingness Pattern and Proportions 

 

Figure 5: Missingness Pattern and Proportions 
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all participants (observations). For example, there are very few observations that are only 

missing values for a few variables (given by mostly blue boxes for any given row), but there are 

also no completely missing observations in the data set (given by completely red rows). 

Furthermore, we are able to observe trends in the missingness across multiple variables. For 

example, for the rows that are not missing an SDS score, the same participants are oftentimes 

also not missing a DBSA score. This is useful information, because this tells us that participants 

who choose to fill out the disability-assessing instrument (SDS) also often choose to fill out a 

depression/mania-assessing instrument (DBSA), indicating a possible linkage between disability 

and depression and/or mania. 

Following the MI procedure, the post-imputation distributions of each of the variables 

were expected to be similar to their pre-imputation distributions, if the MI procedure was 

performing well. Figures 2 & 3 depict both the pre-imputation (blue) and post-imputation (red) 

distributions of all of the quantitative variables (the age variable is not included here, because it 

contained only one missing value), as well as the qualitative variables, respectively. 
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Figure 6: Quantitative Variable Distributions – Pre vs. Post-Imputation 

 

Figure 7: Quantitative Variable Distributions – Pre vs. Post-Imputation 

 

Figure 8: Qualitative Variable Distributions – Pre vs. Post-ImputationFigure 9: 
Quantitative Variable Distributions – Pre vs. Post-Imputation 

 

Figure 10: Quantitative Variable Distributions – Pre vs. Post-Imputation 

Figure 11: Qualitative Variable Distributions – Pre vs. Post-Imputation 
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 For each of these variables, the peaks of their post-imputation densities are centered near 

the peak of their pre-imputation density. There are multiple red lines for the imputed data 

densities, because a single line is drawn for each imputed data set, and 𝑚 = 30 imputed data sets 

were generated as a result of this analysis. Clearly, the pre-imputation distributions of these 

variables are complex, and tend not to follow a known distribution (normal, uniform, etc.). 

However, the post-imputation densities for some of the quantitative variables appear to closely 

follow a normal distribution. This is because these values were imputed by taking a random 

sample from a normal distribution using the RF predicted mean and variance equal to the OOB 

error. Therefore, although these post-imputation densities do not identically match their 

corresponding pre-imputation density, the fact that their post-imputation density is generally 

centered around the peak of their pre-imputation density indicates that the imputation procedure 

seemed to perform well. For the qualitative variables, their post-imputation densities align 

slightly more closely with their corresponding raw data densities. Furthermore, the shape of 

these densities are not bell-shaped like the quantitative post-imputation densities were, since the 

mice RF imputation method for qualitative variables did not randomly sample from the normal 

distribution, but instead simply sampled a terminal node from a randomly chosen DT. 

3.2 Univariate Linear Regression Estimates 
 

Each of the twelve linear regressions outlined in Table 6 were conducted on each of the 

𝑚 = 30 imputed data sets, and results were pooled according Rubin’s rules (given by Equations 

2 – 8). The regression estimates for each of these twelve regression formulas are compared 

between the pooled post-imputation results and the results fitting these same models on the raw, 

pre-imputation data in Tables 7 and 8 below for the QIDS-SR and ASRM outcomes, 

respectively. 
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Table 7: Univariate Regression Estimate Comparisons – QIDS-SR as Outcome 

Model Coef 
Imputed Data Raw Data 

Est SE t DF P-val 𝝀 Est SE t DF P-val 

1. QIDS ~ Age 
𝛽\ 17.225 0.427 40.299 58.235 < 0.001 0.690 18.374 0.635 28.944 - < 0.001 

𝛽@ -0.052 0.011 -4.628 45.692 < 0.001 0.778 -0.067 0.014 -4.632 658 < 0.001 

2. QIDS ~ NumHouse 
𝛽\ 14.357 0.387 37.135 38.506 < 0.001 0.843 14.880 0.436 34.161 - < 0.001 

𝛽@ 0.233 0.094 2.494 53.512 0.016a 0.720 0.281 0.148 1.896 638 0.058a 

3. QIDS ~ CurCare 
𝛽\ 15.040 0.236 63.809 33.329 < 0.001 0.897 15.847 0.227 69.862 - < 0.001 

𝛽@ -0.421 0.337 -1.249 100.163 0.214 0.525 -1.259 0.753 -1.672 560 0.095 

4. QIDS ~ Edu 

𝛽\ 16.510 1.328 12.433 163.626 < 0.001 0.407 18.500 2.528 7.317 - < 0.001 

𝛽@ 0.017 1.500 0.011 132.232 

< 0.001 

0.455 0.088 2.810 0.031 

644 < 0.001 

𝛽c -0.640 1.404 -0.456 135.932 0.449 -1.630 2.601 -0.627 

𝛽d -0.753 1.342 -0.561 159.895 0.412 -2.242 2.550 -0.880 

𝛽e -1.719 1.330 -1.292 171.326 0.398 -2.886 2.561 -1.127 

𝛽} -2.996 1.311 -2.286 186.007 0.381 -4.747 2.558 -1.856 

5. QIDS ~ DBSA 
𝛽\ 13.984 0.278 50.242 32.297 < 0.001 0.908 14.277 0.293 48.785 - < 0.001 

𝛽@ -0.985 0.132 -7.444 36.126 < 0.001 0.867 -1.033 0.149 -6.931 517 < 0.001 

6. QIDS ~ SDS 
𝛽\ 7.625 1.456b 5.237 22.661 < 0.001 0.979 7.173 1.268b 5.655 - < 0.001 

𝛽@ 0.376 0.070c 5.359 22.764 < 0.001 0.979 0.455 0.058c 7.804 73 < 0.001 
Table 7: Highlighted, bolded cells indicate a key difference between the imputed data results and the raw data results. (a) The NumHouse 

predictor variable is statistically significant at the 𝛼 = 0.05 level in the imputed data results but is not in the raw data results. (b) The standard 
error estimate for the intercept of the SDS predictor variable is higher in the imputed data results than the raw data results. (c) The standard 

error estimate for the SDS predictor variable is higher in the imputed data results than the raw data results. 

Table 8: Univariate Regression Estimate Comparisons – ASRM as Outcome 

Model Coef 
Imputed Data Raw Data 

Est SE t DF P-val 𝝀 Est SE t DF P-val 

1. ASRM ~ Age 
𝛽\ 4.746 0.426 11.130 37.905 < 0.001 0.849 5.519 0.812 6.797 - < 0.001 

𝛽@ -0.016 0.011 -1.504 34.618 0.142 0.883 -0.033 0.019 -1.755 277 0.080 

2. ASRM ~ NumHouse 
𝛽\ 3.888 0.326 11.935 33.626 < 0.001 0.894 4.549 0.543 8.378 - < 0.001 

𝛽@ 0.059a 0.074 0.797 44.983 0.429 0.783 -0.137a 0.177 -0.776 271 0.439 

3. ASRM ~ CurCare 
𝛽\ 4.073 0.248 16.421 27.244 < 0.001 0.956 4.393 0.281 15.626 - < 0.001 

𝛽@ -0.222 0.357 -0.622 43.186 0.538 0.799 -1.275 1.059 -1.205 239 0.229 

4. ASRM ~ Edu 

𝛽\ 4.233 0.987 4.290 123.827 < 0.001b 0.471 4.500 2.919 1.542 - 0.124b 

𝛽@ 0.009 0.965 0.010 218.241 

0.023c 

0.350 -0.786 3.310 -0.237 

267 0.128c 

𝛽c 0.425 1.004 0.424 124.868 0.469 0.557 3.001 0.186 

𝛽d 0.041 0.948 0.043 154.579 0.420 0.252 2.944 0.086 

𝛽e -0.547 0.971 -0.563 139.290 0.443 -0.991 2.970 -0.334 

𝛽} -0.478 0.963 -0.496 144.750 0.434 -1.318 2.972 -0.444 

5. ASRM ~ DBSA 
𝛽\ 4.763 0.323d 14.766 25.378 < 0.001 0.968 4.832 0.255d 18.937 - < 0.001 

𝛽@ 0.696 0.132e 5.259 29.463 < 0.001 0.937 1.018 0.131e 7.794 240 < 0.001 

6. ASRM ~ SDS 
𝛽\ 3.944 0.637 6.188 30.041 < 0.001 0.932 5.181 1.878 2.759 - 0.009 

𝛽@ 0.005f 0.034 0.156 28.927 0.877 0.942 -0.029f 0.084 -0.348 35 0.730 
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Table 8: Highlighted, bolded cells indicate a key difference between the imputed data results and the raw data results. (a) The estimate for the 
NumHouse predictor variable is positive in the imputed data results but is negative in the raw data results. (b) The intercept for the Edu predictor 

variable is statistically significant at the 𝛼 = 0.05 level in the imputed data results but is not in the raw data results. (c) The Edu predictor 
variable is statistically significant at the 𝛼 = 0.05 level in the imputed data results but is not in the raw data results. (d) The standard error 

estimate for the intercept of the DBSA predictor variable is higher in the imputed data results than the raw data results. (e) The standard error 
estimate for the DBSA predictor variable is higher in the imputed data results than the raw data results. (f) The estimate for the SDS predictor 

variable is positive in the imputed data results but is negative in the raw data results. 

 

For most models, the imputed results did not differ much from the raw data results. 

Coefficient estimates (Est) did tend to differ slightly in each comparison, but in most cases, were 

still indicating the same directionality (either a positive or negative relationship) between the 

outcome and predictor of interest. As seen in Table 8, the coefficient estimate for number of 

people in the household (NumHouse) predicting ASRM total score shifted from negative (𝛽 =

−0.137) in the raw data results to positive (𝛽 = 0.059) in the imputed results. Similarly, the 

coefficient estimate for SDS total score predicting ASRM total score shifted from negative (𝛽 =

−0.029) in the raw data results to positive (𝛽 = 0.005) in the imputed results.  

Standard errors (SE) were consistently lower in the imputed results than in the raw data 

results in almost all cases. Given the increased sample size and the probable information gain 

from auxiliary variables due to the MI procedure, this is to be expected. As seen in Table 7, the 

SE for the intercept and the SDS total score predictor variable were slightly higher in the 

imputed data results (𝑆𝐸 = 1.546 and 𝑆𝐸 = 0.070, respectively) than in the raw data results 

(𝑆𝐸 = 1.268 and 𝑆𝐸 = 0.058). Similarly, in Table 8, the SE for the intercept and the DBSA 

total score predictor variable were slightly higher in the imputed data results (𝑆𝐸 = 0.323 and 

𝑆𝐸 = 0.132, respectively) than in the raw data results (𝑆𝐸 = 0.255 and 𝑆𝐸 = 0.131).  

The statistical significance (at the 𝛼 = 0.05 significance level) given by the p-values in 

both Table 7 and Table 8 (P-val) also remained mostly consistent between the imputed results 

and the raw data results, but there were a few notable changes. In Table 7, NumHouse was found 
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to be a statistically significant predictor of QIDS-SR total score in the imputed results (𝑝	 =

	0.016), but not in the raw data results (𝑝	 = 	0.058). In Table 8, the intercept for education level 

(Edu) was found to be statistically significant in the imputed results (𝑝	 < 	0.001), but not in the 

raw data results (𝑝	 = 	0.124). Additionally, Edu was found to be a statistically significant 

predictor of ASRM total score in the imputed results (𝑝	 = 	0.023), but not in the raw data 

results (𝑝	 = 	0.128).  

 For the models fit on the imputed data, an additional parameter that represents the 

proportion of the total variance that is attributable to the missing data (𝜆), was calculated. As 

indicated in Equation 8, 𝜆 represents the information lost due to missingness, which acts as a 

numerical representation of the quality of the imputation where higher values of 𝜆 indicate a 

poorer quality imputation. The 𝜆 values in the regression formulas containing predictors with 

very high missingness were, as expected, very high. For example, 𝜆	 = 	0.979 and 𝜆	 = 	0.942 in 

the regression formulas predicting QIDS-SR total score from SDS total score and ASRM total 

score from SDS total score, respectively. Whereas for a predictor with a much lower rate of 

missingness, such as age, 𝜆	 = 	0.778 and	𝜆	 = 	0.883 in the regression formulas predicting 

QIDS-SR total score from age and ASRM total score from age, respectively. Given the high 

rates of missingness for all instrument variables, and subsequently, for both outcome variables of 

interest in these analyses, 𝜆 is expected to be relatively high even in regression formulas 

containing nearly fully-observed predictor variables. In the two instances where the SE is higher 

in the imputed results than in the raw data results, 𝜆 > 0.900, indicating that a total variance that 

is attributable to the missing data above 90% may be indicative of substantial between-

imputation variance. 
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3.3 Multiple Linear Regression Estimates 
 

The multiple linear regression model outlined in Equation 1 was fit to both the raw MN 

data and the imputed data. In the same fashion as the twelve univariate linear regression models, 

the multiple linear regression was fit on each of the 𝑚 = 30 imputed data sets, and the results 

were pooled using Rubin’s rules. The regression estimates for the multiple regression formula 

are compared between the pooled post-imputation results and the results using the same formulas 

on the raw, pre-imputation data in Tables 9 below. 

Table 9: Multiple Regression Estimate Comparisons 

Coef 
Imputed Data Raw Data 

Est SE t DF P-val 𝝀 Est SE t DF P-val 

𝛽\ (Intercept) 16.137 0.828 19.490 36.344 < 0.001a 0.865 4.140 2.657 1.558 - 0.260a 

𝛽@ (SDS) -0.113b 0.055 -2.059 25.024 0.050 0.969 0.973b 0.188 5.178 

2 

0.035 
𝛽c (QIDS) -0.429 0.049 -8.710 29.927 < 0.001 0.933 -0.958 0.157 -6.093 0.026 
𝛽d (ASRM) 0.110 0.043 2.576 37.527 0.014 0.853 0.807 0.092 8.768 0.013 
𝛽e (BART) -0.009 0.009 -1.010 30.760 0.321 0.924 -0.030 0.017 -1.735 0.225 
𝛽} (DBSA) 0.555c 0.107 5.181 36.547 < 0.001d 0.863 -0.933c 0.275 -3.397 0.077d 

𝛽f (Age) 0.015e 0.009 1.558 39.494 0.127 0.833 -0.044e 0.039 -1.140 0.372 
𝛽~ (Sex = Female) -0.162 0.212 -0.769 68.103 

0.687 

0.638 -2.841 0.990 -2.870 

0.103 𝛽� (Sex = Ambiguous) -0.113 1.082 -0.104 95.712 0.537 - - - 
𝛽� (Sex = Other) -0.163 0.765 -0.213 123.927 0.470 - - - 

Sample Size N = 4344 N = 10 
Table 9: Yellow highlighted, bolded cells indicate a key difference between the imputed data results and the raw data results. (a) The intercept 

for the model is statistically significant at the 𝛼 = 0.05 level in the imputed data results but is not in the raw data results. (b) The estimate for the 
SDS predictor variable is negative in the imputed data results but is positive in the raw data results. (c) The estimate for the DBSA predictor 

variable is positive in the imputed data results but is negative in the raw data results. (d)  The DBSA predictor variable is statistically significant 
at the 𝛼 = 0.05 level in the imputed data results but is not in the raw data results. (e) The estimate for the Age predictor variable is positive in 

the imputed data results but is negative in the raw data results. Red highlighted, bolded cells indicate parameters that were unable to be 
estimated using the raw data – in this case, these were Sex variable categories.  

 

For this multiple linear regression model, there are many important differences between 

the imputed data results and the raw data results. As seen in Table 9, both the intercept (𝑝	 <

	0.001) and the DBSA total score predictor (𝑝	 < 	0.001) are statistically significant in the model 

resulting from the imputed data, but are not statistically significant (𝑝	 = 	0.260 and 𝑝	 = 	0.077 
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for intercept and DBSA total score, respectively) in the model resulting from the raw data. 

Furthermore, there are major discrepancies in the directionality of the coefficient estimates 

between the imputed data model results and the raw data model results. The SDS total score 

coefficient estimate shifted from negative (𝛽 = −0.113) in the imputed results to positive (𝛽 =

0.973) in the raw data results, the DBSA total score coefficient shifted from positive (𝛽 =

0.555) in the imputed results to negative (𝛽 = −0.933) in the raw data results, and the 

coefficient for age shifted from positive (𝛽 = 0.015) in the imputed results to negative (𝛽 =

−0.044) in the raw data results.  

 Other important results from comparing the multiple linear regression results include the 

size of the sample included in each analysis. For the imputed data results, 𝑁	 = 	4,344 

observations were used in each of the 𝑚 = 30 runs of the regression, whereas for the raw data 

results, only 𝑁	 = 	10 observations were used in the analysis. Another important distinction 

between the results of the two different models was the fact that the model fit on the raw data 

was unable to estimate coefficients for the “Ambiguous” and “Other” categories for the sex 

variable, since of the 𝑁	 = 	10 total observations used in the analysis, none of those 10 

participants fell into either of those categories. Using the raw data for analysis will likely often 

be subject to this pitfall, in that with such a small sample size, estimates for some less-common 

covariate patterns may not be possible, severely limiting the generalizability of the results. 

4. Discussion 
 

 Using the MICE method in tandem with RFs to multiply impute missing data in large, 

mixed-type data sets such as MN provides a reliable, flexible way to gain useful, clinically 

relevant results from otherwise nearly unanalyzable data. Even for variables with large 
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percentages of missing data, the mice algorithm using RFs for each of the chained equations is 

able to impute the missing values of these highly missing variables with considerable accuracy, 

as the pre and post-distributions of these variables tended to align quite well. The univariate 

regression results comparing coefficient estimates, standard errors, p-values, and other quantities 

of interest indicate that similar results are obtained using the imputed data as compared to the 

raw “true” data, which is highly desirable when conducting an MI. And, the few differences that 

did arise between the imputed vs. raw data results for these regressions provide useful 

information regarding the need for both a larger sample and further efforts at getting participants 

to complete more assessments than they currently are.  

Additionally, the two cases where the imputed results SEs were higher than the raw data 

SEs serve as an important reminder that using MI results is not always necessary nor is it always 

the best option. In these cases, there are still valuable insights to be gained; when the variable 

missingness and the total variance that is attributable to the missing data is too high, in addition 

to insufficient information gained from the auxiliary variables, a raw data analysis may be 

preferred over using the MI results. Alternatively, more imputed data sets may need to be 

generated in order to properly estimate the between-imputation variance. In any case, in most 

practical settings the clinician/researcher likely will not be interested in univariate results, and 

will instead be interested in multiple possible predictors in a given model. The multiple 

regression results clearly highlight the maximum potential benefit of using MI to generate 

multiple imputed data sets and analyze the data this way. The analyzable sample size gained 

from performing such a procedure is immense, and lets researchers investigate many more 

possible relationships between covariates that otherwise would be near impossible to do with 

highly missing data. 
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 Using a RF model to multiply impute the missing data is only one of several possible 

options that could have been used on these data. Given the complexity of the MN data in that it 

contains both qualitative and quantitative variables, it made sense to consider a RF model-

oriented approach. However, using other well-established methods within the MICE framework 

such as predictive mean matching for continuous variables, logistic regression for binary 

categorical variables, or linear discriminant analysis for factor variables are other viable options. 

Yet, many of these other methods cannot appropriately account for interactions or non-linearities 

in the data, and much more careful consideration would likely need to be taken if a non-RF 

method were to be used for imputation instead.  

An alternative R package altogether, called missForest, was also considered for use in 

these analyses instead of using MICE with RFs. The missForest package has been shown to 

outperform MICE, CART, EMB and other imputation methods in multiple different data settings 

[53], but for MI purposes its justification for use is fundamentally flawed. The authors suggest that 

the nature of RFs inherently constitute a MI scheme, since as part of any RF, data are sampled 

with replacement at random in order to train the RF model. While the idea of randomly sampling 

data is similar to MI by Rubin’s original standards, the missForest method produces only one 

completed data set after implementation and also does not randomly sample around the 

predictions for the missing values themselves, which are two blatant violations of the MI 

scheme. Ultimately, this ruled out the use of missForest for the purpose of this paper, and while 

missForest is a strong candidate for single-imputation purposes, it cannot (yet) be used for 

conducting a proper MI procedure. 

There were some important limitations in this analysis that need to be considered. First, 

there was an extremely high amount of missing data for the instrument variables. This resulted in 
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high 𝜆 values, which indicates a lower-quality imputation than what might be hoped for. 

Relatedly, in the case where both the predictor variable and the outcome variable are highly 

missing (as seen in Table 8, Model 6), caution should be taken in generalizing these results 

towards the larger population. However, the regression estimates even with these high 𝜆 values 

and large amount of missing data for the instrument variables still yielded imputed data results 

that were similar to the raw data results in almost all cases. Future efforts towards encouraging 

MN participants to complete as many of the instruments as possible may help with this issue.  

Additionally, nearly 70% of all MN participants had not completed any of the 

instruments. Thus, imputing instrument scores for these individuals without any within-subject 

information gain from instrument variables may not be advisable. Nevertheless, it does seem 

plausible that the demographic factors available in the MN data would be sufficient to impute 

instrument score values for these participants, due to the high quality of the imputed results. 

Further encouragement of participants to complete instruments would also likely help with this 

issue. Lastly, the variables chosen for this analysis were merely a subset of the full MN data 

available. It is possible that some information was lost in the exclusion of select demographic 

and/or instrument variables, and that the imputed data may provide a better representation of the 

“true” population if these omitted variables had been included. 

These limitations point to numerous possible extensions of applying this MI scheme to 

the MN data. Future analyses could include all of the possible variables, even if they are 

considered less clinically relevant, to determine if this might result in higher quality imputations. 

Additionally, as van Buuren and Groothuis-Oudshoorn point out, parallel computation streams 

could also be implemented using another R package in combination with the mice package in 

order to reduce computation time [59]. Different imputation models (other than RFs) might also 
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be applied to these data to compare the resulting parameter estimates to these results, in an 

attempt to determine a “best” imputation model choice. A comparison of the statistical power 

between the raw data analyses and the imputed data analyses would also be a worthwhile 

investigation, requiring more rigorous calculations for the power of the imputed analyses. Lastly, 

the complex data structure of the MN data is not unique to this one data set – seeing as online 

support platforms and projects are becoming increasingly popular in psychiatric research, the MI 

method outlined in this paper provides a framework for analysis of many more data sets of a 

similar type to MN. Given the non-parametric, flexible nature of RFs and the statistical validity 

of MI, the challenges that missing data impose upon psychiatric data can be properly accounted 

for with relative ease using these two statistical techniques. 

In conclusion, using MICE with RF models for the imputation of the missing data 

associated with MN yields multiple, complete data sets that are very similar to the raw, 

unimputed data. Using proper statistical techniques for the pooling of results across the multiple 

imputed data sets gives accurate parameter estimates with SEs almost always lower than that of 

the unimputed data, due largely to the drastically advantageous increase in analyzable sample 

size and information gain from auxiliary variables. Providing clinicians with these multiple 

complete data sets paves the way for numerous future studies and analyses that otherwise might 

not be possible with the complete cases data. Additionally, the code that has been written as a 

product of conducting this analysis provides a general, relatively simple framework for future 

statisticians to follow so that these future analyses can be possible; even for data sets other than 

the MN data. All of this is with the hope in mind that advancing the ability to analyze and draw 

valid inference from psychiatric data will enable clinicians and statisticians alike to work 
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harmoniously to improve the health of individuals across the world suffering from mood and 

other mental health disorders. 
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